Integrated Scientific Modeling

 and Lab AutomationLuca Cardelli, University of Oxford 2022-09-27 Applied Systems Biology Course

Outline

- The Scientific Method

Its eventual automation

- Lab Protocols (that know nothing about models)

Digital Microfluidics

- Models (that know nothing about protocols)

Chemical Reaction Networks

- Integration

Closed-loop modeling and protocol execution

The Scientific Method

Hasan Ibn al-Haytham (1027) Book of Optics
Galileo Galilei (1638) Two New Sciences
 Expand or Reject

Gather Data to

 Test PredictionsRelevant data can come from the literature, new observations or formal experiments. Thorough testing requires replication to verify results.

Formulate Hypotheses
What are the general causes of the phenomenon I am wondering about?

Discovery through Observation

The Scientific Method ~ 1638

Discovery through Collaboration

The Scientific Method ~ 2000's

1 protein $=30$ people $/ 30$ years Humans have $>250,000$ proteins $:$:

Discovery through Automation

The Scientific Method ~ 2020's

while (true) \{ predict(); falsify();
\}

High Throughput

The Inner Loop

- A model is refined by testing a protocol against a systems
- A protocol is refined by testing a model against a systems
- Today: publication does not accurately reflect execution
- Model:
poorly-maintained matlab script
- Protocol:
poorly-described manual steps in the lab

- System: poorly-characterized and hardly "resettable"
- \Rightarrow Crisis in biology: experiments are done once and are hard to reproduce http://www.nature.com/news/reproducibility-1.17552

The Inner Loop

- Tomorrow, automation
$\begin{array}{ll}0 & \text { - Model: } \\ \stackrel{0}{0} & \text { unambiguous (mathematical) description (CompBio) } \\ 0 \text { Protocol: } & \text { standardized (engineered) parts and procedures (SynthBio) }\end{array}$ - System: characterized (biological) organism and foundries (SysBio)
- Verification: simulation / analysis / model checking / theorem proving
- Observation: lab automation

- Falsification: statistical inference / model reduction
- Performance evaluation/optimization: of model+protocol+system combined
- Management: version control, equipment monitoring, data storage

The Inner Loop

In this talk

- Via Molecular Programming

Protocols

(lab procedures that know nothing about models)

A Protocol

For DNA gate assembly and activation in vitro

Protocol steps (liquid handing)

Digital Microfluidics

OpenDrop
https://www.youtube.com/watch?v=ncfZWaPm7-4

Purple Drop (UW)
https://misl.cs.washington.edu/projects/fluidics.html

OpenDrop speed test
https://www.youtube.com/watch?v=pSIs9L h3Q0

a = input(substance_A)
b = input(substance_B)
$a b=\operatorname{mix}(a, b)$
while get_pH(ab) > 7:
heat (ab)
acidify(ab)

Digital Microfluidics

- A general, programmable, platform to execute the main liquid-handling operations
- To close the cycle, it can support many automated observation techniques on-board or off-board via peripheral pumps (sequencing, mass spec, ...) although these are all very hardware-dependent.

A Protocol Language

Samples: containers with volume, temperature, concentrations

$$
P=
$$

Experimental Biological Protocols with Formal Semantics

Alessandro Abatc ${ }^{2}$, Luca Cardelli ${ }^{1,2}$, Marta Kwiatkowska ${ }^{2}$, Luca Laurenti ${ }^{2}$, and Boyan Yordanov ${ }^{1}$
Microsoft Research Cambridge
Department of Computer Science, University of Oxford

Protocol Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>
$\llbracket P \rrbracket^{\rho}$ is the final state produced by a protocol P where ρ binds its free variables:

$$
\begin{aligned}
& \llbracket x \rrbracket^{\rho}=\rho(x) \\
& \llbracket x_{0}, V, T \rrbracket^{\rho}=\left(x_{0}, V, T\right) \\
& \llbracket M i x\left(P_{1}, P_{2}\right) \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}^{1}, V_{1}, T_{1}\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let }\left(x_{0}^{2}, V_{2}, T_{2}\right)=\llbracket P_{2} \rrbracket^{\rho} \\
& \quad\left(\frac{x_{0}^{1} V_{1}+x_{0}^{2} V_{2}}{V_{1}+V_{2}}, V_{1}+V_{2}, \frac{T_{1} V_{1}+T_{2} V_{2}}{V_{1}+V_{2}}\right) \\
& \llbracket \text { let } x=P_{1} \text { in } P_{2} \rrbracket^{\rho}= \\
& \quad \text { let }\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho} \\
& \quad \text { let } \rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V, T\right)\right\} \\
& \quad \llbracket P_{2} \rrbracket^{\rho_{1}}
\end{aligned}
$$

Summarizing

- Our protocols are (liquid handling) programs
- We can compute their behavior (their final state)
- We can (virtually) run them (by simulation)
- We can (physically) run them (e.g., by digital microfluidics)

Models

(equations that know nothing about protocols)
We could choose Differential Equations as our modeling language, as in most of science.

Instead, we choose Chemical Reaction Networks (this is roughly equivalent).

Anyway, in order to "implement differential equations" we need to "implement chemical reactions" (or some other physical realization).

Chemical Reaction Networks (CRN)

$$
X+Y->r Z+W
$$

- A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

- A programming language, finitely encoded in the genome

By which living things manage the unbounded processing of matter and information

- A mathematical structure, rediscovered in many forms

Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, ...

- A description of mechanism ("instructions" / "interactions") rather than behavior ("equations" / "approximations")

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior

E.g., a CRN model of DNA interactions

- Strand displacement reaction between DNA strands

$$
\begin{aligned}
& \stackrel{1^{*}}{ } 2^{*} 3^{*} \frac{4^{*}}{2}+\frac{60.0003}{\longrightarrow} \underset{1^{*}}{\frac{2}{2} \quad 3}
\end{aligned}
$$

- (It says nothing about the protocols we just saw)

Programming any dynamical system as a CRN

Galileo Galilei 1602
Christiaan Huygens 1673

$$
\partial^{2} \theta=-g / l \sin \theta
$$

Equation of motion of the simple pendulum
https://en.wikipedia.org/wiki/Pendulum
A dynamical systems is anything characterized by a system of differential equations (ODEs).
Elementary dynamical systems are those that include on the r.h.s. only polynomials, trigonometry, exponentials, fractions, and their inverses.
(All of biochemistry, all of electronics, most of physics, deterministic chaos, etc.)
STEP 1, Polynomization: Elementary ODEs can be exactly reduced to just polynomial ODEs.

Programming any dynamical system as a CRN

Consider the canonical polynomial oscillator: sine/cosine

A very simple elementary ODE system.
But variables go negative: we can't have that in a CRN (no negative concentrations).
STEP 2, Positivation: Split potentially negative variables of polynomial ODEs into the difference of two positive variables. Obtain the same trajectories as differences.

Biomolecular implementation of linear I/O systems

Programming any dynamical system as a CRN

Translate positive ODEs to chemical reactions

The Law of Mass Action tells us how to produce polynomial ODEs from CRNs.
The inverse process is called Hungarization, it works for Hungarian ODEs
(polynomial ODEs where each negative monomial has the I.h.s. differentiated variable as a factor).
STEP 3, Hungarization: Translate polynomial ODEs to chemical reaction networks:
each monomial on the r.h.s. produces one reaction.
ON THE INVERSE PROBLEM OF REACTION KINETICS
V. HARS - J. TOTH

Subject to the ODEs being Hungarian, but that is always satisfied after positivation!

Programming any dynamical system as a CRN

Translate those CNRs to (real, DNA) molecules

Chemistry tells us (sometimes) what reactions molecules obey.
The inverse process is possible for DNA molecules, because we can "program" them.
STEP 4, Molecular programming: Translate any mass action chemical reaction network into a set of DNA molecules that obey those reactions.

Works up to an arbitrarily good approximation of Mass Action kinetics,

DNA as a universal substrate for chemical kinetics
David Soloveichik, Georg Seelig, and Erik Winfree
PNAS March 23, 2010 107 (12) 5393.5398; htps://doi.org10.1073/Pnas.0909380107 and up to time rescaling.

Programming any 'dynamical system as a CRN

Thus, CNRs are "Shannon complete", and can by physically realized

Programming any dynamical system as a CRN

- Chemistry is (also) a formal language that we can use to implement ~any dynamical system with real (DNA) molecules
- Approaching a situation where we can "systematically compile" (synthesize) a model to DNA molecules, run an (automated) protocol, and observe (sequence) the results in a closed loop.
- N.B.: DNA can be used to manipulate and organize programmatically other forms of matter, so this is not really restricted to DNA experiments.

Model Semantics (deterministic)

- ODE semantics of CRNs

Definition (CRN Flux) Let $(\mathcal{A}, \mathcal{R})$ be a $C R N$. Let $F(V, T) \in \mathbb{R}_{\geq 0}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the flux of the $C R N$ at volume $V \in \mathbb{R}_{\geq 0}$ and temperature $T \in \mathbb{R}_{\geq 0}$. For a concentration vector $\mu \in \mathbb{R}_{\geq 0}^{|\mathcal{A}|}$ we assume $F(V, T)(\mu)=\sum_{\tau \in \mathcal{R}} v_{\tau} \alpha_{\tau}(V, T, \mu)$ with stoichiometric vector v_{τ} and rate function α_{τ}.

Law of Mass Action $F(V, T)$ makes up the r.h.s. of an ODE system $\partial \mathcal{A}=F(V, T)$
State produced by a CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R}) \quad$ (species \mathcal{A}, reactions \mathcal{R})
with flux F (r.h.s. of its mass action ODEs) at time t, from initial state (x_{0}, V, T) (initial concentrations x_{0}, volume V, temperature T):
$\llbracket\left(\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t)=(G(t), V, T)$ let $G:[0 \ldots H) \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the solution of $G\left(t^{\prime}\right)=x_{0}+\int_{0}^{t^{\prime} F F(V, T)_{s}}(G(s)) d s$

Summarizing

- Our models are (chemical) programs
- We can compute their behavior (their final state)
- We can (virtually) run them by integration of the ODEs
- We can (physically) run them by DNA nanotech
- Recall: we are aiming for models that can be placed into a closed-loop automated model+protocol cycle.

Models together with Protocols

An Integrated Description

Samples. containers with volume, temperature, concentrations

${ }^{2} P_{0}=$

$$
\begin{aligned}
x & \text { (a sample variable) } \\
\left(x_{0}, V, T\right) & \text { (initial condition) } \\
\text { let } x=P_{1} \text { in } P_{2} & \text { (define local variable) } \\
\text { Mix }\left(P_{1}, P_{2}\right) & \text { (mix samples) } \\
\text { let } x, y=\text { Split }\left(P_{1}, p\right) \text { in } P_{2} & \text { (split samples) } \\
\text { Equilibrate }(P, t) & \text { (equilibrate sample for } t \text { seconds) } \\
\text { Dispose }(P) & \text { (discard sample) }
\end{aligned}
$$

each sample evolves (via Equilibrate) according to a given overall CRN:
$\mathcal{C}=(\mathcal{A}, \mathcal{R}) \quad$ (species, reactions)

Joint script

Input $_{1}=<1^{*} 2>$ Output $=<23>$
Input $_{2}=<34^{*}>$ Gate $\left.=\left\{1^{*}\right\}[2]\right\}\left\{4^{*}\right\}$
$P_{1}=$ let $\operatorname{In} 1=\left((\right.$ Input $\left.1,100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let In $2=\left((\right.$ Input $\left.2,100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let $G A=\left((\right.$ Output, $\left.100.0 \mathrm{nM}), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let $G B=\left(\left(\right.\right.$ Gate $\left.\left._{B}, 100.0 \mathrm{nM}\right), 0.1 \mathrm{~mL}, 25.0^{\circ} \mathrm{C}\right)$ in let sGA,= Dispense $\left(G A, p_{1}\right)$ in let s $G B,=$ Dispense $\left(G B, p_{2}\right)$ in letsIn $1,=$ Dispense $\left(\right.$ In $\left.1, p_{3}\right)$ in letsIn $2,=$ Dispense $\left(\right.$ In $\left.1, p_{4}\right)$ in Observe(Equilibrate(Mix)(Mix(Equilibrate($\left.\left.\left.\left.\left.\operatorname{Mix}(s G A, s G B), t_{1}\right), s \operatorname{In} 1\right), s I n 2\right), t_{2}\right), i d n\right)$.

Program Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>
$\llbracket P \rrbracket^{\rho}$ is the final state produced by a protocol P for a fixed CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R}):$

Experimental Biological Protocols with Formal Semantics

```
\(\llbracket l e t x, y=\operatorname{Split}\left(P_{1}, p\right)\) in \(P_{2} \rrbracket^{\rho}=\)
    let \(\left(x_{0}, V, T\right)=\llbracket P_{1} \rrbracket^{\rho}\)
    let \(\rho_{1}=\rho\left\{x \leftarrow\left(x_{0}, V \cdot p, T\right), y \leftarrow\left(x_{0}, V \cdot(1-p), T\right)\right\}\)
    \(\left.\llbracket P_{2}\right]_{1}^{\rho_{1}}\)
    \(\llbracket \operatorname{Equilibrate}(P, t) \rrbracket^{\rho}=\)
        let \(\left(x_{0}, V, T\right)=\llbracket P \rrbracket^{\rho}\)
        \(\left.\llbracket\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t)\)
    \(\llbracket \operatorname{Dispose}(P) \rrbracket^{\rho}=\left(0^{|\Lambda|}, 0,0\right)\),
```

State produced by CRN $\mathcal{C}=(\mathcal{A}, \mathcal{R})$ with flux F at time t :
$\llbracket\left(\left(\mathcal{A}, \mathcal{R}, x_{0}\right), V, T\right) \rrbracket(H)(t)=$
\quad let $G:[0 \ldots H) \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the solution of $G\left(t^{\prime}\right)=x_{0}+\int_{0}^{t^{\prime}} F(V, T)(G(s)) d s$
$(G(t), V, T)$

A Joint Semantics

This semantics gives us a joint simulation algorithm, connecting chemical simulation with protocol simulation.

In this presentation everything is deterministic. The state of the protocol is passed to the chemical simulator, which computes a new state that it passes to the protocol simulator, and so on.

We can also define a joint stochastic simulation, passing mean and variance information back and forth between chemical and protocol simulation.
This requires an extension of the above semantics using the Linear Noise Approximation of chemical kinetics, which computes mean and variance of concentrations (both by ODEs, not e.g. by Gillespie algorithm), and a similar extension of the protocol operations.

Program Semantics (stochastic)

Each program denotes a final state <concentrations covariances volume, temperature>

A Language for Modeling and Optimizing Experimental Biological Protocols

Luca Cardelli *, Marta Kwiatkowska and Luca Laurenti ${ }^{\text { }}$

Definition 3. (CRN Flux) Let $(\mathcal{A}, \mathcal{R})$ be a $C R N$. Let $F(V, T) \in \mathbb{R}_{\geq 0}^{|\mathcal{A}|} \rightarrow \mathbb{R}^{|\mathcal{A}|}$ be the flux of the $C R N$ at volume $V \in \mathbb{R}_{\geq 0}$ and temperature $T \in \mathbb{R}_{\geq 0}$. For a concentration vector $\mu \in \mathbb{R}_{\geq 0}^{|\mathcal{A}|}$ we assume $F(V, T)(\mu)=\sum_{\tau \in \mathcal{R}} v_{\tau} \alpha_{\tau}(V, T, \mu)$, with stoichiometric vector v_{τ} and rate function α_{τ}. We call J_{F} the Jacobian of $F(V, T)$, and J_{F}^{T} its transpose. Further, define $W(V, T)(\mu)=$ $\sum_{\tau \in \mathcal{R}} v_{\tau} v_{\tau}^{\top} \alpha_{\tau}(V, T, \mu)$ to be the diffusion term.

Definition 4. (CRN Time Evolution) Given a $\operatorname{CRS}(\mathcal{A}, \mathcal{R}),(\mu, \Sigma, V, T)$, its evolution at time $t<H$ (where $H \in \mathbb{R}_{\geq 0} \cup\{\infty\}$ is a time horizon) is the state $\left(\boldsymbol{\mu}_{\mu}(t), \Sigma_{\mu, \Sigma}(t), V, T\right)$ obtained by integrating its flux up to time t, where:

$$
\begin{align*}
& \boldsymbol{\mu}_{\mu}(t)=\mu+\int_{0}^{t} F(V, T)\left(\boldsymbol{\mu}_{\mu}(s)\right) d s \tag{1}\\
& \boldsymbol{\Sigma}_{\mu, \Sigma}(t)=\Sigma+\int_{0}^{t} J_{F}\left(\boldsymbol{\mu}_{\mu}(s)\right) \boldsymbol{\Sigma}_{\mu, \Sigma}(s)+\boldsymbol{\Sigma}_{\mu, \Sigma}(s) J_{F}^{\top}\left(\boldsymbol{\mu}_{\mu}(s)\right)+W(V, T)\left(\boldsymbol{\mu}_{\mu}(s)\right) d s, \tag{2}
\end{align*}
$$

with $\boldsymbol{\mu}_{\mu}(0)=\mu$ and $\Sigma_{\mu, \Sigma}(0)=\Sigma$. If, for such an $H, \boldsymbol{\mu}$ or $\boldsymbol{\Sigma}$ are not unique, then we say that the evolution is ill-posed. Otherwise, $\boldsymbol{\mu}_{\mu}(t)$ and $\Sigma_{\mu, \Sigma}(t)$ define a Gaussian process with that mean and covariance matrix for $t<H$.

$$
\begin{aligned}
& \underset{\times}{ } \text { computation } \\
& \text { A Language for Modeling and Optimizing Experimental } \\
& \text { Biological Protocols } \\
& \llbracket x \rrbracket^{\rho}=\rho(x) \\
& \llbracket\left(p_{1} \ldots p_{|\mathcal{A}|}, r_{V}, r_{T}\right) \rrbracket^{\rho}=\left(\llbracket p_{1} \rrbracket^{\rho} \ldots \llbracket p_{|\mathcal{A}|} \rrbracket^{\rho}, 0^{|\mathcal{A}| \times|\mathcal{A}|}, r_{V}, r_{T}\right) \\
& \llbracket \text { let } x=P_{1} \text { in } P_{2} \rrbracket^{\rho}=\llbracket P_{2} \rrbracket^{\rho_{1}} \\
& \text { where } \rho_{1}=\rho\left\{x \leftarrow \llbracket P_{1} \rrbracket^{\rho}\right\} \\
& \llbracket \operatorname{Mix}\left(P_{1}, P_{2}\right) \rrbracket^{\rho}=\left(\frac{V_{1} \mu_{1}+V_{2} \mu_{2}}{V_{1}+V_{2}}, \frac{V_{1}^{2} \Sigma_{1}+V_{2}^{2} \Sigma_{2}}{\left(V_{1}+V_{2}\right)^{2}}, V_{1}+V_{2}, \frac{V_{1} T_{1}+V_{2} T_{2}}{V_{1}+V_{2}}\right) \\
& \text { where }\left(\mu_{1}, \Sigma_{1}, V_{1}, T_{1}\right)=\llbracket P_{1} \rrbracket^{\rho / a n d}\left(\mu_{2}, \Sigma_{2}, V_{2}, T_{2}\right)=\llbracket P_{2} \rrbracket^{\rho} \\
& \llbracket \text { let } x, y=\operatorname{Split}\left(P_{1}, p\right) \text { in } P_{2} \rrbracket^{\rho}=\llbracket P_{2} \rrbracket^{\rho_{1}} \\
& \text { where } r=\llbracket p \rrbracket^{\rho}, \quad 0<r<1 \quad \text { and } \quad(\mu, \Sigma, V, T)=\llbracket P_{1} \rrbracket^{\rho} \\
& \text { and } \rho_{1}=\rho\{x \leftarrow(\mu, \Sigma, r V, T), y \leftarrow(\mu, \Sigma,(1-r) V, T)\} \\
& \llbracket \text { Equilibrate }(P, p) \rrbracket^{\rho}=\left(\boldsymbol{\mu}_{\mu}(t), \Sigma_{\mu, \Sigma}(t), V, T\right) \\
& \text { where } t=\llbracket p \rrbracket^{\rho} \quad \text { and } \quad(\mu, \Sigma, V, T)=\llbracket P \rrbracket^{\rho} \\
& \llbracket \operatorname{Dispose}(P) \rrbracket^{\rho}=\left(0^{|\mathcal{A}|}, 0^{|\mathcal{A}| \times|\mathcal{A}|}, 0,0\right)
\end{aligned}
$$

together with $\llbracket p \rrbracket^{\rho}$ defined as:

$$
\begin{aligned}
& \llbracket z \rrbracket^{\rho}=\rho(z) \\
& \llbracket r \rrbracket^{\rho}=r
\end{aligned}
$$

Stochastic Analysis

- We can ask: what is the probability of a certain outcome given uncertainties in both the protocol and the model?
- Conversely: which parameters of both the protocol and the model best fit the observed result?
- E.g., we can use Statistical Modelchecking to estimate the probability that the output will fall in a certain range, given the distributions over uncertain model and protocol parameters.

Summarizing

Automated discovery loop:
Realization of the model (e.g. DNA Synthesis)

Protocol execution (e.g. digital microfluidics)
Model+Protocol

Readout (e.g., DNA sequencing)

Data analysis

Simulating Reaction Networks together with Digital Protocols

CMSB'2020 Best Tool Paper Award

Kaemika* app
Integrating protocols and chemical simulation

Xaemika /'kimika/

Android
Windows
$\overbrace{\text { GitHub }}$
Search "Kaemika" in the app stores http://lucacardelli.name/kaemika.html

Article
A Language for Modeling and Optimizing Experimental Biological Protocols

Luca Cardelli ${ }^{*}$ ©, Marta Kwiatkowska and Luca Laurenti ${ }^{\dagger}$
An integrated language for chemical models \& experimental protocols

Deterministic (ODE) and stochastic (LNA) simulation

Chemical reaction networks (CRNs) and liquid-handling protocols

Reaction scores
Functional scripting

GUI

Main features

- Species and reactions
- Characterized by initial values and rates
- "Samples" (compartments) and Protocols
- Isolate species and reactions in a compartment, and mix compartments
- Kinetics (simulation)
- Deterministic (ODE) or stochastic (LNA) for chemical models
- Digital microfluidics for chemical protocols
- Programming abstractions
- Assemble models and protocols as compositions of modules

Species and Reactions

```
//======================================
// Lotka 1920, Volterra }192
// (simplified with all rates = 1)
//======================================
```

number $\times 1_{0}$ <- uniform $(0,1) / /$ random $\times 1_{0}$
number $\times 2_{0}<-$ uniform $(0,1) / /$ random $\times 2_{0}$

```
species x1 @ x10.M
```

// prey
// predator
x1 -> x1 + x1
x1 + x2 -> x2 + x2
x2 -> \emptyset
equilibrate for 40 ACTION.
by alipred J. Lotra.
Received June 2, 1920.

x $\times 2$ 世

Ex: Predatorial (recursive model)

```
function Predatorial(number n) {
    if n = 0 then
        define species prey @ 1 M
        prey -> 2 prey // prey reproduces
        report prey
        yield prey
    else
        define species predator @ 1/n M
        species prey = Predatorial(n-1)
        prey + predator ->{n} 2 predator // predator eats
        predator -> Ø // predator dies
        report predator
        yield predator
    end
}
species apexPredator = Predatorial(5)
equilibrate for 50
```


Extracting the Model and the Protocol

From the script

species $\{c\}$
sample A
species a @ 1M in A
amount c @ 0.1 M in A
$a+c->a+a$
equilibrate $A 1=A$ for 1

sample B

species b @ $1 M$ in B
amount c @ 0.1 M in B
$b+c->c+c$
equilibrate $B 1=B$ for 1
split $C, D=A 1$ by 0.5
dispose C
mix $E=D$ with $B 1$
$a+b->b+b$
equilibrate $F=E$ for 20 dispose F

The protocol

The (final) model (sample E)

STATE_5
sample E \{1.5mL, 293.2 K$\}$ \{
$a=354.5 \mathrm{mM}$
$\mathrm{b}=0.5674 \mathrm{M}$
consumed
$a+c$-> $a+a$
$b+c->c+$
$a+b->b+b$

KINETICS for STATE_5 (sample E) for 20 time units: $\partial a=a * c-a * b$
$\partial c=c * b-a * c$
$\partial \mathrm{b}=\mathrm{a} * \mathrm{~b}-\mathrm{c} * \mathrm{~b}$

Writing Models Compositionally

- Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

- Rich data types
numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation
- Modern abstractions

Functional: programs take data as parameters and produce data as results Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not "strings")

Mass Action Compiler

- Lorenz chaotic attractor

Kaemika Microfluidics Compiler

- Mix, split, equilibrate, dispose
- Automatic routing - no geometrical information
- Hot/cold zones
sample A $\{3 \mu \mathrm{~L}, 20 \mathrm{C}\}$
split $B, C, D, E=A$
$\operatorname{mix} F=E, C, B, D$
dispose F

Conclusions

Integrated modeling

Of chemical reaction networks and protocols
How the Kaemika app supports it
Why it needs a new language for smooth integration

Closed-loop modeling, experimentation and analysis
For complete lab automation
To "scale up" the scientific method

